Quantum Engineering of Superconducting Array Detectors In Low-Light Applications
Optical measurements are fundamental to experimental science and observations of nature. At the single photon level, superconducting nanowire single-photon detectors (SNSPDs) are well-established as the gold standard in measuremen...
Optical measurements are fundamental to experimental science and observations of nature. At the single photon level, superconducting nanowire single-photon detectors (SNSPDs) are well-established as the gold standard in measurement, due to their near-unit efficiency, negligible noise and ultrafast response. Building SNSPD arrays and simultaneously extracting intensity, spectral and spatial resolution from a device at the single photon level will revolutionise astronomical measurements, spectrometry in chemistry and life sciences, and quantum imaging. Key to unlocking this potential is to marry concepts from detector tomography with robust high-yield detector fabrication, the integration of complementary optical technologies and low heat-load scalable readout schemes. QuESADILLA tackles these challenges head-on, with a series of experiments demonstrating the groundbreaking potential of quantum detector engineering. In contrast to engineering quantum states of light for metrology, QuESADILLA will shift that paradigm by engineering the quantum mechanical response of the detector itself. QuESADILLA introduces the concepts of a modal decomposition of the positive operator valued measure (POVM), and quantum-enhanced POVM engineering in low-light applications. To do so, arrays of SNSPDs in combination with lithographically-written etalons and dielectric coatings will be developed, in concert with state-of-the-art scalable approaches to large scale quantum tomography. QuESADILLA will exceed the state of the art in many areas: performing the first modal decomposition of detector tomography and the largest tomographic reconstruction of a quantum detector; the first demonstration of quantum detector engineering using nonclassical ancilla states; the first demonstration of etalon array reconstructive spectrometry with single photons; and exploit the fastest electronic shutter speed of any optical sensor to enable the highest dynamic range detection of continuous illumination.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.