Quantum Engineering of Superconducting Array Detectors In Low-Light Applications
Optical measurements are fundamental to experimental science and observations of nature. At the single photon level, superconducting nanowire single-photon detectors (SNSPDs) are well-established as the gold standard in measuremen...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ShaMROCk
Superconductive MiR phOton Counter
168K€
Cerrado
SQuDET
Advanced Quantum Measurement and Detection for Superconducti...
210K€
Cerrado
SuperPHOTON
2D Topological Superconducting Single Photon Detector Device...
150K€
Cerrado
PEQEM
Photonics for engineered quantum enhanced measurement
1M€
Cerrado
INGENIOUS
sINGle microwave photon dEtection for hybrid quaNtum Informa...
2M€
Cerrado
Duración del proyecto: 76 meses
Fecha Inicio: 2022-04-27
Fecha Fin: 2028-08-31
Líder del proyecto
UNIVERSITAET PADERBORN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Optical measurements are fundamental to experimental science and observations of nature. At the single photon level, superconducting nanowire single-photon detectors (SNSPDs) are well-established as the gold standard in measurement, due to their near-unit efficiency, negligible noise and ultrafast response. Building SNSPD arrays and simultaneously extracting intensity, spectral and spatial resolution from a device at the single photon level will revolutionise astronomical measurements, spectrometry in chemistry and life sciences, and quantum imaging. Key to unlocking this potential is to marry concepts from detector tomography with robust high-yield detector fabrication, the integration of complementary optical technologies and low heat-load scalable readout schemes. QuESADILLA tackles these challenges head-on, with a series of experiments demonstrating the groundbreaking potential of quantum detector engineering. In contrast to engineering quantum states of light for metrology, QuESADILLA will shift that paradigm by engineering the quantum mechanical response of the detector itself. QuESADILLA introduces the concepts of a modal decomposition of the positive operator valued measure (POVM), and quantum-enhanced POVM engineering in low-light applications. To do so, arrays of SNSPDs in combination with lithographically-written etalons and dielectric coatings will be developed, in concert with state-of-the-art scalable approaches to large scale quantum tomography. QuESADILLA will exceed the state of the art in many areas: performing the first modal decomposition of detector tomography and the largest tomographic reconstruction of a quantum detector; the first demonstration of quantum detector engineering using nonclassical ancilla states; the first demonstration of etalon array reconstructive spectrometry with single photons; and exploit the fastest electronic shutter speed of any optical sensor to enable the highest dynamic range detection of continuous illumination.