We propose the radical vision of a new integrated circuit technology for machine learning where low-voltage field-effect transistors and non-volatile memories are integrated next to each other exploiting quantum engineering of het...
ver más
31/12/2022
UNIPI
3M€
Presupuesto del proyecto: 3M€
Líder del proyecto
UNIVERSITA DI PISA
No se ha especificado una descripción o un objeto social para esta compañía.
Descripción del proyecto
We propose the radical vision of a new integrated circuit technology for machine learning where low-voltage field-effect transistors and non-volatile memories are integrated next to each other exploiting quantum engineering of heterostructures of two-dimensional materials (2DMs), i.e. the atom-by-atom design and fabrication of devices which combine vertical and lateral heterostructures (VH and LH, respectively) of 2DMs.
QUEFORMAL pursues a very risky and original proposed solution, with the extremely high potential gain of advancing a science-enabled technology for the fabrication of integrated circuits for machine learning, in a field in which Europe has a strong basic-science leadership, thanks to the pioneering breakthroughs on graphene and 2D materials.
The overall objective and targeted breakthrough of QUEFORMAL is to experimentally demonstrate the fabrication and operation of devices based on LH and VH of 2DMs for logic-in-memory integrated circuits and to show the potential of this technology for the fabrication of integrated circuits for machine learning. Devices include i) lateral heterostructure FETs (LH-FETs) operating at low voltage (0.6 V) fabricated in close vicinity to ii) floating-gate non-volatile memories based on VHs for the gate stack and LHs for the channel (LVH-NVMs), that can be programmed at low voltage (<5 V) with retention time larger than 1 month.
The QUEFORMAL consortium consists of six partners and has unique advantages: Consortium members have proposed and patented the LH-FET concept and have experimentally demonstrated the floating gate non-volatile memory concept using 2D materials.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.