Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer di...
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.
Ultrasound imaging can be deeply enhanced by means of algorithms developed in the field of geophysical imaging. Such algorithms, based upon adjoint-state modelling and iterative optimization, provide quantitative images of human t...
Ultrasound imaging can be deeply enhanced by means of algorithms developed in the field of geophysical imaging. Such algorithms, based upon adjoint-state modelling and iterative optimization, provide quantitative images of human tissue with very high resolution. At present time, such images can only be attained by means of high-performance computing and using specific ultrasound data acquisition devices. When combined, hardware and software have a huge impact potential for soft-tissue imaging, such as in breast cancer imaging. Nevertheless, and as is customary in medical imaging, the obtained images only provide with the mean, or most likely, values of tissue at each pixel, being uncertainty quantification an extremely expensive process, typically deemed as unfeasible for practical purposes.
A revolutionary development in adjoint-based ultrasound imaging allows us to potentially obtain images of uncertainties at the cost of a single, mean-value, image. Such development will be the basis of transformative implications in terms of confidence-estimates for diagnosis. We aim at disrupting the breast cancer screening paradigm by means of a safe (radiation-free), accurate (quantitative) and reliable (uncertainty-aware) novel breast imaging modality.
Within QUSTom we will investigate the fundamental science behind adjoint-based uncertainty imaging and establish its potential suitability for breast cancer diagnosis. The feasibility of the technology as a diagnosis tool relies on 1) adapting the data acquisition hardware for optimal resolution, 2) implementing the algorithms in high-performance computers in order to obtain a short time-to-solution and 3) feasibility analysis by expert radiologists in comparison with the state-of-the-art in breast imaging.
This proposal covers the three aspects and opens the possibility of applying similar principles in other imaging fields, both in medicine and elsewhere.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.