Quality of Service for the Internet of Things in Smart Cities via Predictive Net...
Quality of Service for the Internet of Things in Smart Cities via Predictive Networks
The goal of this project is to enable the delivery of Quality of Service (QoS) for the Internet of Things (IoT) in smart cities. 50 billion devices are expected to be connected to the Internet by 2020. In order to achieve high end...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto QoSIoTSmartCities
Duración del proyecto: 31 meses
Fecha Inicio: 2019-03-22
Fecha Fin: 2021-10-29
Líder del proyecto
YASAR UNIVERSITESI
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
145K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The goal of this project is to enable the delivery of Quality of Service (QoS) for the Internet of Things (IoT) in smart cities. 50 billion devices are expected to be connected to the Internet by 2020. In order to achieve high end-to-end QoS for IoT in smart cities, the problems of scalability, latency, reliability, energy efficiency and mobility must be solved jointly. The specific objectives of this project are (1) to develop forecasting algorithms in order to predict IoT traffic on the Internet, (2) to develop predictive QoS optimization algorithms targeted at IoT, and (3) to build a scalable network simulation of IoT devices in a representative smart city model in order to estimate the end-to-end latency, reliability, energy-efficiency for a section of a city-wide network that includes mobile IoT devices. The results of the project are expected to impact the development of IoT standards in regard to the incorporation of forecasting-based methods to wireless network planning and development. The long-term impact of the project beyond IoT is expected to be the incorporation of forecasting-based methods into all layers of the protocol stack for wireless networks.