The adoption of AI technology is growing faster than ever, tripling from 2017 to 2021 (McKinsey). Risks of AI incidents, in particular with ethical biases, prediction errors, and cybersecurity, are rising. Current AI quality tools...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
LAZARUS
pLatform for Analysis of Resilient and secUre Software
4M€
Cerrado
BugGPT
Practical, Learning-Based Tools for Finding and Fixing Bugs
150K€
Cerrado
MirandaTesting
Testing Program Analyzers Ad Absurdum
1M€
Cerrado
AutoProbe
Automated Probabilistic Black Box Verification
2M€
Cerrado
TUNE
Testing the Untestable Model Testing of Complex Software In...
2M€
Cerrado
TIN2009-14599-C03-01
DESARROLLO DE SOFTWARE DE ALTA CALIDAD, FIABLE, DISTRIBUIDO...
391K€
Cerrado
Información proyecto Giskard
Duración del proyecto: 24 meses
Fecha Inicio: 2023-08-22
Fecha Fin: 2025-08-31
Líder del proyecto
GISKARD AI
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
4M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The adoption of AI technology is growing faster than ever, tripling from 2017 to 2021 (McKinsey). Risks of AI incidents, in particular with ethical biases, prediction errors, and cybersecurity, are rising. Current AI quality tools are insufficient and rely on manual testing, leaving a gap that AI/ML engineers cannot meet in terms of workload, costs & demand at the needed pace.
To address this need, GISKARD is developing an open-source and SaaS solution for companies that need quality assurance of their AI models. It provides a software platform for automated AI Quality Testing, Inspection & Remediation.
As a member of AFNOR, the French national standards council, GISKARD is committed to becoming the leading European software provider to help organisations prepare for the upcoming EU AI Act. EIC support is crucially needed to achieve this. In this project, GISKARD will optimise and validate its AI Testing solution and extend it to more use cases such as Time Series & Computer Vision.