Innovating Works

QUADAG

Financiado
Quadratic refinements in algebraic geometry
Enumerative geometry, the mathematics of counting numbers of solutions to geometric problems, and its modern descendents, Gromov-Witten theory, Donaldson-Thomas theory, quantum cohomology and many other related fields, analyze... Enumerative geometry, the mathematics of counting numbers of solutions to geometric problems, and its modern descendents, Gromov-Witten theory, Donaldson-Thomas theory, quantum cohomology and many other related fields, analyze geometric problems by computing numerical invariants, such as intersection numbers or degrees of characteristic classes. This essentially algebraic approach has been successful mainly in the study of problems over the complex numbers and other algebraically closed fields. There has been progress in attacking enumerative problems over the real numbers; the methods are mainly non-algebraic. Arithmetic content underlying the numerical invariants is hidden when analyzed by these non-algebraic methods. Recent work by the PI and others has opened the door to a new, purely algebraic approach to enumerative geometry that recovers results in both the complex and real cases in one package and reveals this arithmetic content over arbitrary fields. Building on these new developments, the goals of this proposal are, firstly, to use motivic homotopy theory, algebraic geometry and symplectic geometry to develop new purely algebraic methods for handling enumerative problems over an arbitrary field, secondly, to apply these methods to central enumerative problems, recovering and unifying known results over both C and R and thirdly, to use this new approach to reveal the hidden arithmetic nature of enumerative problems. In 2009 R. Pandharipande and I applied algebraic cobordism to prove the degree zero MNOP conjecture in Donaldson-Thomas theory. More recently, I have developed several aspects of the theory of quadratic invariants using motivic homotopy theory. ver más
28/02/2025
UDE
2M€
Duración del proyecto: 69 meses Fecha Inicio: 2019-05-13
Fecha Fin: 2025-02-28

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2019-05-13
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2018-ADG: ERC Advanced Grant
Cerrada hace 6 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
UNIVERSITAET DUISBURGESSEN No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5