Pyrazine Signalling in Commensal and Pathogenic Bacteria
Quorum sensing (QS) is a bacterial cell–cell communication process involving the production, release, and detection of extracellular signal molecules called autoinducers. QS is key to all microbiology as it enables otherwise solit...
Quorum sensing (QS) is a bacterial cell–cell communication process involving the production, release, and detection of extracellular signal molecules called autoinducers. QS is key to all microbiology as it enables otherwise solitary bacteria to coordinate complex cooperative tasks such as biofilm formation and pathogenesis. Consequently, targeting QS is a promising new concept for antimicrobial therapy. However, for this concept to become reality, we must first identify QS systems in pathogenic bacteria, discover the relevant autoinducers and study the underlying regulatory principles.
I recently identified a new QS pathway in Vibrio cholerae, the causative agent of cholera disease. The autoinducer of the system is DPO (3,5-dimethylpyrazin-2-ol), a new molecule to biology and the first pyrazine involved in QS. DPO production is widespread among microbes including pathogenic and commensal bacteria. V. cholerae synthesizes DPO from host mucins and our preliminary data show that DPO controls collective phenotypes, such as biofilm formation and toxin production in this major human pathogen. I therefore hypothesize that DPO connects virulence, QS and communication with the host microbiota in V. cholerae and related bacteria.
The overarching goal of this project is to understand the roles of DPO in host-microbe interaction and collective behaviours. To this end, we will pursue three key research goals. First, we will study the molecular parameters underlying DPO-signalling and probe the global effects of DPO on gene expression. Second, we will focus on the role of DPO in virulence of V. cholerae and other pathogens. Third, we will probe the effect of DPO on microbial behaviours, such as swarming and biofilm formation. This combined work will provide a comprehensive model for DPO-signalling in bacteria, which will not only advance the fundamental understanding of QS-based communication strategies, but might also provide the framework for QS-inspired anti-infectives.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.