Electromagnetic pulses have ubiquitous applications as information carriers, and the continuously increasing demand for larger capacity of information channels, faster data transmission and high resolution real time imaging necess...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PGC2018-098350-B-C22
DESARROLLO DE METASUPERFICIES A FRECUENCIAS DE MICROONDAS. C...
68K€
Cerrado
BES-2009-022907
METAMATERIALES: ESTRUCTURAS PERIODICAS Y ESTRUCTURAS SINTETI...
23K€
Cerrado
PGC2018-098350-B-C21
DESARROLLO DE METASUPERFICIES A FRECUENCIAS DE MICROONDAS. A...
45K€
Cerrado
GAPWAVE ICS
Waveguide type semiconductor integrated circuits ICs in ga...
2M€
Cerrado
SOLISYNTH
Synthesis of Low Noise Microwaves Using Solitons Locked to a...
187K€
Cerrado
EQC2019-006189-P
Aplicaciones fotónicas y de microondas de generación arbitra...
144K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Electromagnetic pulses have ubiquitous applications as information carriers, and the continuously increasing demand for larger capacity of information channels, faster data transmission and high resolution real time imaging necessitate novel approaches to pulse generation, transmission and exploitation in functional devices. Artificial electromagnetic materials (metamaterials) have opened new avenues for controling the properties of waves in the engineered media. The periodic and quasi-periodic layered semiconductor structures constitute a novel class of composite materials, which can offer a novel means for the design of innovative microwave and THz applications using pulsed signals. The main objective of this project is to investigate the properties of pulses in active and nonlinear artificial media composed of periodic and quasi-periodic arrangements of semiconductor, ferrite and metal layers. The theory of nonlinear three-wave interaction in pumping regime in a periodic nipi and periodic and quasi-periodic magnetoactive structures will be developed and the resonance phenomena improving second-harmonic generation efficiency will be analysed. The effects of external biasing fields, pumping, layers' parameters and geometry on the properties of pulsed signals in the semiconductor based metamaterials will be investigated in millimetre, THz and optical frequency ranges. The expected outcomes will give insight into the pulse propagation phenomena in the semiconductor based active and nonlinear artificial electromagnetic materials and provide the conceptual basis for the waveform control of the pulsed signals in the physical layer of hardware and the new applications ranging from ultra-wideband (UWB) communications to THz sensors.