Psych-STRATA - A Stratified Treatment Algorithm in Psychiatry: A program on stra...
Psych-STRATA - A Stratified Treatment Algorithm in Psychiatry: A program on stratified pharmacogenomics in severe mental illness
A key problem in Mental Health is that up to one third of patients suffering from major mental disorders develop resistance against drug therapy. However, patients showing early signs of treatment resistance (TR) do not receive ad...
A key problem in Mental Health is that up to one third of patients suffering from major mental disorders develop resistance against drug therapy. However, patients showing early signs of treatment resistance (TR) do not receive adequate early intensive pharmacological treatment but instead they undergo a stepwise trial-and-error treatment approach. This situation originates from three major knowledge and translation gaps: i.) we lack effective methods to identify individuals at risk for TR early in the disease process, ii.) we lack effective, personalized treatment strategies grounded in insights into the biological basis of TR, and iii.) we lack efficient processes to translate scientific insights about TR into clinical practice, primary care and treatment guidelines. It is the central goal of PSYCH-STRATA to bridge these gaps and pave the way for a shift towards a treatment decision-making process tailored for the individual at risk for TR. To that end, we aim to establish evidence-based criteria to make decisions of early intense treatment in individuals at risk for TR across the major psychiatric disorders of schizophrenia, bipolar disorder and major depression. PSYCH-STRATA will i.) dissect the biological basis of TR and establish criteria to enable early detection of individuals at risk for TR based on the integrated analysis of an unprecedented collection of genetic, biological, digital mental health, and clinical data. ii.) Moreover, we will determine effective treatment strategies of individuals at risk for TR early in the treatment process, based on pan-European clinical trials in SCZ, BD and MDD. These efforts will enable the establishment of novel multimodal machine learning models to predict TR risk and treatment response. Lastly, iii.) we will enable the translation of these findings into clinical practice by prototyping the integration of personalized treatment decision support and patient-oriented decision-making mental health boards.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.