In recent years water near surfaces and solutes has been observed to be differently structured and
to show slower reorientation and hydrogen-bond dynamics than in bulk. Aqueous proton transfer is
a process that strongly relies on...
In recent years water near surfaces and solutes has been observed to be differently structured and
to show slower reorientation and hydrogen-bond dynamics than in bulk. Aqueous proton transfer is
a process that strongly relies on the structure and dynamics of the hydrogen-bond network of liquid
water and that often occurs near surfaces. Examples are thylakoid and mitochondrial membranes and
the nanochannels of transmembrane proteins and fuel cells. An important but experimentally largely
unexplored area of research is how the rate and mechanism of aqueous proton transfer change due to
the surface-induced structuring of the water medium. Theoretical work showed that the structuring and
nano-confinement of water can have a strong effect on the proton mobility. Recently, experimental tech-
niques have been developed that are capable of probing the structural dynamics of water molecules and
proton-hydration structures near surfaces. These techniques include heterodyne detected sum-frequency
generation (HD-SFG) and two-dimensional HD-SFG (2D-HD-VSFG).
I propose to use these and other advanced spectroscopic techniques to study the rate and molecular mech-
anisms of proton transfer through structured aqueous media. These systems include aqueous solutions
of different solutes, water near extended surfaces like graphene and electrically switchable monolayers,
and the aqueous nanochannels of metal-organic frameworks. These studies will provide a fundamen-
tal understanding of the molecular mechanisms of aqueous proton transfer in natural and man-made
(bio)molecular systems, and can lead to the development of new proton-conducting membranes and
nanochannels with applications in fuel cells. The obtained knowledge can also lead to new strategies
to control proton mobility, e.g. by electrical switching of the properties of the water network at surfaces
and in nanochannels, i.e. to field-effect proton transistors.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.