Innovating Works

ProPlantStress

Financiado
Proteolytic processing in plant stress signal transduction and responses to abio...
Proteolytic processing in plant stress signal transduction and responses to abiotic stress and pathogen attack Site-specific proteolytic processing is an irreversible post-translational protein modification that generates distinct protein species with new functions, interactions and subcellular locations. In plants, proteolytic processing... Site-specific proteolytic processing is an irreversible post-translational protein modification that generates distinct protein species with new functions, interactions and subcellular locations. In plants, proteolytic processing regulates hormonal and stress signaling leading to adaptation of metabolic pathways and is implicated in plant-pathogen interactions. Despite their importance, proteolytic processes have largely been identified serendipitously, specific cleavage sites have rarely been identified and only a few of the hundreds of proteases encoded in plant genomes (>800 in Arabidopsis) have been linked to any substrates. Positional proteomics enables system-wide identification of proteolytic processing and protease substrate repertoires through quantitative determination of protein N- or C-termini. ProPlantStress will employ these approaches, which I co-developed during my postdoctoral research, to two linked abiotic and biotic stress conditions: i) Time-resolved mapping of chloroplast protein processing induced by high intensity light will reveal novel mechanisms of retrograde signal transduction, stress response and acclimation; ii) Profiling of protein processing triggered by pathogen recognition, combined with substrate identification for selected host and bacterial pathogen effector proteases will identify proteins with novel functions in plant immune responses and systemic signaling. Importantly, ProPlantStress will not merely catalogue termini and substrates: Mapping of cleavage sites to the protein domains and correlation with other modifications, such as phosphorylation, generates testable hypotheses on the function of processed protein species that will be examined in detail. ProPlantStress will thereby provide fundamental insights into proteolytic mechanisms underlying plant stress responses that are unattainable by other means. In the long term such knowledge is needed to develop new strategies for crop protection and mitigation of harvest loss. ver más
30/11/2020
FZJ
2M€
Duración del proyecto: 66 meses Fecha Inicio: 2015-05-20
Fecha Fin: 2020-11-30

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2020-11-30
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-StG-2014: ERC Starting Grant
Cerrada hace 10 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
FORSCHUNGSZENTRUM JULICH GMBH No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5