Protein Structure Molecular Mechanisms and Human Genetic Disease Beyond the Lo...
Protein Structure Molecular Mechanisms and Human Genetic Disease Beyond the Loss of function Paradigm
The ability to identify damaging genetic variants is central to the diagnosis, treatment and prevention of human disease. Computational phenotype predictors are widely used for prioritising likely pathogenic mutations, but their u...
The ability to identify damaging genetic variants is central to the diagnosis, treatment and prevention of human disease. Computational phenotype predictors are widely used for prioritising likely pathogenic mutations, but their utility is limited by their accuracy. Conversely, experimental characterisation of variants is powerful but time consuming and difficult to perform on a large scale, limiting applicability in routine variant prioritisation. In this project, we will improve our ability to identify pathogenic variants through a combination of computational and experimental approaches. Fundamental to our strategy will be our consideration of alternate molecular mechanisms by which mutations can cause disease, in contrast to the current overwhelming focus on loss-of-function.
First, we will use structural bioinformatics to investigate the different molecular mechanisms underlying pathogenic mutations, and learn how they are related to protein structure and phenotype. Next, we will perform deep mutational scanning (DMS) on at least 10 human disease genes, enabling us to measure fitness and elucidate molecular mechanisms for all possible single amino-acid substitutions. This will facilitate the direct identification of novel pathogenic variants, and allow us to evaluate the performance existing computational phenotype predictors. Finally, we will implement our own computational variant prioritisation pipeline and meta-predictor, using our new understanding of molecular mechanisms to integrate computational phenotype and stability predictors and DMS data with structural and other protein-level features. Crucially, we will demonstrate the utility of our approach in application to sequencing data from clinical and population cohort studies. Together, the knowledge we learn, the experimental data we measure, and the tools we develop will improve our ability to identify novel pathogenic variants, and thus diagnose human genetic disorders.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.