PROJECTED MEMRISTOR A nanoscale device for cognitive computing
We are entering the third era of computing: cognitive computing, which holds great promise in terms of deriving intelligence/knowledge from huge volumes of data. Today’s cognitive computers are based on the von Neumann architectur...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SpinAge
Weighted Spintronic Nano Oscillator based Neuromorphic Compu...
4M€
Cerrado
COFFEE
Controlling and Observing Filaments For Enhanced memristive...
203K€
Cerrado
BrainScaleS
Brain inspired multiscale computation in neuromorphic hybrid...
12M€
Cerrado
PGC2018-099422-A-I00
COMPUTACION NEUROMORFICA CON NANO-DISPOSITIVOS DE CONMUTACIO...
61K€
Cerrado
2DMEM
Revealing the physics of switching mechanism in 2D materials...
200K€
Cerrado
RESPITE
RECONFIGURABLE SUPERCONDUCTING AND PHOTONIC TECHNOLOGIES OF...
2M€
Cerrado
Información proyecto PROJESTOR
Duración del proyecto: 63 meses
Fecha Inicio: 2016-03-07
Fecha Fin: 2021-06-30
Líder del proyecto
IBM RESEARCH GMBH
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
3M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
We are entering the third era of computing: cognitive computing, which holds great promise in terms of deriving intelligence/knowledge from huge volumes of data. Today’s cognitive computers are based on the von Neumann architecture, in which the computing and the memory units are separated. Cognitive computing, however, is inherently data-centric, meaning that huge amounts of data need to be shuttled back and forth at high speeds, a task at which that architecture is highly inefficient.
It is becoming increasingly clear that to build efficient cognitive computers, we need to transition to non-von Neumann architectures where memory and logic coexist in some form. Brain-inspired neuromorphic computing and the fascinating new area of memcomputing are two key non-von Neumann approaches being researched. The critical element in these novel computing paradigms is a very-high-density, low power, variable-state, programmable and non-volatile nanoscale memory device. A technological breakthrough that will lead us to this device will be a game-changer for cognitive computing.
The goal of this project is to explore one such device concept that I co-invented at IBM Research - Zurich and which we have dubbed projected memristor or projestor for short. The projestor is indeed a memristor, i.e., a resistive element that remembers the history of the current that previously flowed through the device. The distinguishing feature of a projestor is that the physical mechanism of resistance storage is decoupled from the information retrieval process.
In the first part of the project, we will design and fabricate projestor devices to establish the concept of projection and assess its merits and drawbacks. In the second part, we will expand the concept substantially to explore highly innovative projestor devices. In the third part, we will explore various applications of projestors in neuromorphic computing and memcomputing, with a particular focus on real-time data analytics.