Living systems employ cLiving systems employ chemical energy to generate mechanical forces and motion, often resulting in emergent phase transitions that manifest as various spatiotemporal structures. This inherent behavior makes...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MicMactin
Dissecting active matter Microscopic origins of macroscopic...
1M€
Cerrado
PHYSAPS
The Physics of Active Particle Suspensions
2M€
Cerrado
ADSNeSP
Active and Driven Systems Nonequilibrium Statistical Physic...
2M€
Cerrado
PID2021-126570NB-I00
MATERIA ACTIVA, CONFINADA Y AUTOENSAMBLADA FUERA DE EQUILIBR...
242K€
Cerrado
PID2021-127795NB-I00
TRANSPORTE FUERA DEL EQUILIBRIO Y COMPORTAMIENTO COLECTIVO E...
28K€
Cerrado
FIS2009-12964-C05-03
DINAMICA INTERFACIAL DE NO EQUILIBRIO CON APLICACIONES A LA...
48K€
Cerrado
Información proyecto ProMatt
Duración del proyecto: 59 meses
Fecha Inicio: 2024-09-01
Fecha Fin: 2029-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Living systems employ cLiving systems employ chemical energy to generate mechanical forces and motion, often resulting in emergent phase transitions that manifest as various spatiotemporal structures. This inherent behavior makes living systems ideal subjects for the study of nonequilibrium thermodynamics. Yet, their complexity impedes our current experimental control of their phase transitions. We propose a novel, simple, and quantitative experimental system to study phase transitions of living matter in a controlled nonequilibrium environment. We create an innovative in-vitro active system using biological components, linking a microtubule motile network to gene circuits that control the system through the local synthesis of building blocks. This will allow us to program the constituent's interactions: type, range, strength, position, and the mechanical properties of the carrying media. We offer to study dynamical phase transitions from two perspectives: (1) Internally driven nonequilibrium phase transitions defined by dynamical or nonreciprocal interactions. (2) Thermal transitions occurring within a nonequilibrium environment. We will establish this system by studying microtubules active flow hydrodynamics and pattern formation driven by gene circuits (Aim 1). We will also program local interactions that defy Newton's third law and study their emergent collective dynamics (Aim 2). Lastly Study phase transition of thermal deformable soft objects mechanically interacting with microtubules flows. (Aim 3). Our innovative approach will yield tools and insights for understanding biomaterial self-organization with broad relevance. It has the potential, in the field of physics to lead to the discovery of novel phase transitions and explain them quantitatively. In biology, it helps uncover the mechanisms behind cell shape maintenance and motility regulation. Moreover, it holds promise for industrial applications, enabling precise transport control within closed reactors.