Program Development for the Molecular Simulation of Protein Surface Interactions
"The ability to understand and predict the interactions between proteins and material surfaces represents a critical need for many applications in bionanotechnology and biomedical engineering. Empirical force field molecular simul...
ver más
31/07/2013
KINGS COLLEGE LOND...
151K€
Presupuesto del proyecto: 151K€
Líder del proyecto
KINGS COLLEGE LONDON
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo FP7 notifico la concesión del proyecto
el día 2013-07-31
No tenemos la información de la convocatoria
0%
100%
Características del participante
Este proyecto no cuenta con búsquedas de partenariado abiertas en este momento.
Información adicional privada
No hay información privada compartida para este proyecto. Habla con el coordinador.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto PROTEIN-SURF SIM
Líder del proyecto
KINGS COLLEGE LONDON
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
151K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"The ability to understand and predict the interactions between proteins and material surfaces represents a critical need for many applications in bionanotechnology and biomedical engineering. Empirical force field molecular simulation methods have the potential to provide this capability, with the European community currently leading the world in this area of research. However, methods have not yet been developed to adequately support these types of simulations. For these simulations, an ideal program will provide the capability of using a Class I protein force field (FF) to model the behavior of the protein in the solution phase, a Class II FF to model the behavior of the solid material phase, and an interfacial FF to control interactions at the liquid-solid interface. In addition, the program must be highly scalable to enable simulations to be efficiently run on today’s large computer clusters via parallel simulation. While no simulation code currently provides these capabilities, the LAMMPS program comes closest by providing the ability to run both Class I and II force fields in the same simulation with massively parallel processing capability, but without the capability to fully utilize an interfacial force field (IFF) to independently control interphase behavior. The objectives of the proposed research are to (1) modify the LAMMPS molecular simulation program to develop the capability to independently implement an interfacial force field (IFF) to control interfacial behavior (LAMMPS/IFF), (2) benchmark the performance of LAMMPS/IFF for large-scale parallel processing, and (3) apply LAMMP/IFF to demonstrate the ability to accurate simulate protein-surface interactions. The development of this molecular simulation program has the potential to revolutionize current capabilities to accurately predict protein-surface interactions and to serve as a valuable tool for the design of the surfaces to control the bioactive state of surface-bound proteins."