Production of synthetic renewable aviation fuel from CO2 and H2
TAKE-OFF is an industrially driven project that will be a game-changer in the cost effecTAKE-OFF is an industrially driven project that will be a game-changer in the cost effective production of sustainable aviation fuel (SAF) fro...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto TAKE-OFF
Duración del proyecto: 48 meses
Fecha Inicio: 2020-12-08
Fecha Fin: 2024-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
TAKE-OFF is an industrially driven project that will be a game-changer in the cost effecTAKE-OFF is an industrially driven project that will be a game-changer in the cost effective production of sustainable aviation fuel (SAF) from CO2 and hydrogen. Due to their strict criteria in terms of physical and chemical properties, the aviation sector is highly limited in the number of options for meeting sustainability goals.
The unique TAKE-OFF technology is based on conversion of CO2 and H2 to SAF via ethylene as intermediate. The industrial partners SkyNRG (SAF developer) and FEV (power systems) will team up with ground-breaking research groups at CNRS (catalyst development), TNO (reactor and process design), and RWTH (engine out emissions reduction) to deliver a highly innovative process which produces SAF at lower costs, higher energy efficiency and higher carbon efficiency to the crude jet fuel product than the current benchmark Fischer-Tropsch process. The project will further leverage the investments in the ALIGN-CCUS (ERA-NET ACT) project with the involvement of key industrial players in the development of synthetic sustainable fuels. TAKE-OFF’s key industrial players are RWE (power producer), MHPSE (energy technology provider), and AKEU (electrolysis systems), allowing the demonstration of the full technology chain, utilizing industrial captured CO2 and electrolytically produced hydrogen. The demonstration activities will provide valuable data to the University of Southern Denmark for comprehensive technical and economic and environmental analyses with an outlook on Chemical Factories of the Future. The consortium is further supplemented by the leading industry association, CO2 Value Europe, for communication and exploitation.
The achievement of the project objectives will contribute directly to the UN Sustainable Development Goals, European Green Deal, and the Renewable Energy Directive II, where sustainable aviation fuels are receiving increased attention.