Process intensification towards sustainable wastewater treatment with phototropi...
Improving current biological wastewater treatment (WWT) plants towards more sustainable solutions is a priority of the EU (Water Framework Directive). Conventional activated sludge technology faces some challenges such as high O2...
Improving current biological wastewater treatment (WWT) plants towards more sustainable solutions is a priority of the EU (Water Framework Directive). Conventional activated sludge technology faces some challenges such as high O2 demand and inevitable CO2 emissions. Phototropic microorganisms offer a sustainable way of WWT by converting CO2 to O2 and valuable biofeedstock which can further be converted to bioenergy. Photogranules are compact spherical biofilms which contain high amounts of phototrophs in addition to heterotrophs. As a result, photogranule based WWT can couple CO2 and O2 fluxes from different microorganisms leading to an aeration free WWT. However, to utilize the true potential of this technology, revolutionary reactor designs together with more fundamental understanding on photogranulanation is needed. This work aims to intensify photobioreactors for WWT by using a multidisciplinary approach which combines microrhelogy and microbiology with mass and photon transport models. To have more control over growth and light, novel supports for biofilms will be designed. In addition, the project will explore the relationship between environmental conditions such as light availability and shear on microbial community composition and structure in complex phototropic biofilms by both microfluidic experiments and mathematical models. The information obtained from these studies will be translated to a macroscopic level using simplified transport phenomena models to design an efficient photobioreactor. The findings of this study will both advance our understanding of phototropic biofilms and pave the way towards industrial-scale sustainable WWT. With this project, I am aiming to combine my background on design and modelling of light-driven multiphase systems with the distinguished expertise of the host research group in WWT at TU Delft while acquiring further knowledge on mass transfer in photobiofilms during my secondment at ETH Zurich.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.