Probabilistic decision framework for Resilience assessment of Offshore energy in...
Probabilistic decision framework for Resilience assessment of Offshore energy infrastructures subjected to seismic Submarine landsLIDE hazard (PRO-SLIDE)
The offshore energy infrastructure (OEI)-soil interaction has been studied by numerical analyses in the literature. However, these studies are rarely focused on the performance of OEIs during the seismic submarine landslide (SSL)....
The offshore energy infrastructure (OEI)-soil interaction has been studied by numerical analyses in the literature. However, these studies are rarely focused on the performance of OEIs during the seismic submarine landslide (SSL). Moreover, the pseudo-static approach employed for stability assessment of OEI is generally conservative for deep water conditions. The dynamic approach needs a wide range of input parameters and spends a lot of time and money on analyses. Accordingly, predictive models are needed to fill the gap between these approaches for a simple prediction of OEI deformations during SSL.
The overall objective of PRO-SLIDE is to develop a reliable and low computational cost solution for simplified resilience assessment of OEIs damage due to SSLs. Answering this concern is not trivial, but it can guide future analyses and contribute to gaining insights from a calibration effort using numerical models that will be undertaken using a benchmark centrifuge model that can successfully capture key mechanisms and features as well as trends. The findings will be based on a database produced via advanced numerical analyses of the OEI-SSL mechanism using the DEM-FEM, a catalog of near-fault ground motions, machine learning technic, and probabilistic/fragility analyses.
A two-way transfer of knowledge is guaranteed since I have a solid background in the development of earthquake-induced sliding models and ground motions databank and also my supervisor at AAU has vast experience in the resilience assessment of OEIs and data-driven models. Moreover, my supervisors at secondments (RMIT&HKUST) have great experience in the fields of OEI numerical simulation and physical modeling. Accordingly, this will ensure the achievement of this timely and innovative project as well as the dissemination and exploitation of the expected results. The acquired skills will allow me to embrace an academic/non-academic career path in the EU.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.