Predicting the Impact of Monoclonal Antibodies Vaccines on Antimicrobial Resis...
Antibiotic resistance (AMR), a major threat to human health, is increasing in all bacteria through antibiotic-induced selection, cross-species transfer of genetic mobile elements harbouring resistance genes, global transport and e...
Antibiotic resistance (AMR), a major threat to human health, is increasing in all bacteria through antibiotic-induced selection, cross-species transfer of genetic mobile elements harbouring resistance genes, global transport and environmental waste. With an almost empty antibiotic pipeline, monoclonal antibodies (mAbs) and vaccines are increasingly recognized as important tools against AMR. Yet, available resources cannot finance all potential interventions, and choices need to be made according to costs of mAbs and vaccines, impact on the burden of AMR and prevention of its economic consequences. The PrIMAVeRa consortium will develop a web-based platform that combines advanced mathematical models with a comprehensive epidemiological repository. Systematic reviews will generate data to inform the model structure and parametrisation and select the most appropriate models for determining the AMR burden by pathogen, infection and target population. Deterministic continuous time models (ordinary differential equations [ODE]) and stochastic discrete time individual-based models with multiple modules will cover all relevant aspects of AMR, while Bayesian approaches will be used for cost-effectiveness analysis. The models will be calibrated in 8 EU countries based on the data coming from health information systems. The PrIMAVeRa consortium comprises a prominent collection of European research groups with expertise in AMR, vaccines, mAbs, mathematical and economical modelling. The proposal builds on established research collaborations and existing research infrastructures from EU- and IMI-funded research projects, such as EPI-Net (COMBACTE-MAGNET) and CLIN-Net and LAB-Net (COMBACTE-NET). The major deliverable will be an open access web-based user interface that will allow the wider scientific community to freely access and apply the models. This platform will also help healthcare authorities to make data-driven decisions on which vaccines and mAbs should be prioritised.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.