Predicting cardiovascular regeneration integrating mechanical cues and signalin...
The key challenge in regenerative medicine is to re-establish a physiological tissue organization as this is conditional for proper tissue functionality. In the cardiovascular field, tissue engineering of blood vessels and heart v...
The key challenge in regenerative medicine is to re-establish a physiological tissue organization as this is conditional for proper tissue functionality. In the cardiovascular field, tissue engineering of blood vessels and heart valves requires the development of a tri-laminar structure. Previous attempts to establish this organization have been mainly trial-and-error based. Therefore, to force breakthroughs and accelerate clinical translation, computational modeling is critical to understand and predict the process of neo-tissue regeneration starting from non-living biodegradable materials (i.e. scaffolds).
The main drivers of regeneration are (1) hemodynamic loads that trigger mechanically-driven tissue growth and remodeling, and (2) signaling interactions between cells that control the emergence of global tissue organization (e.g. layering of vessels and valves). While the first aspect currently receives vast attention, the modeling of cell signaling in the context of tissue engineering remains an unexplored area. In this project, I aim to obtain a mechanistic understanding of how a critical pathway in the cardiovascular system, i.e. the Notch signaling pathway, drives the emergence of global tissue organization while interacting with mechanical cues. I will adopt a unique, multi-disciplinary approach, where quantitative in vitro experiments will be performed to inform novel multi-scale computational models of Notch signaling and its consequences on regeneration. I will leverage these models to understand and predict in vivo regeneration of engineered cardiovascular tissues starting from various initial conditions.
If successful, this project will have a tremendous impact on the development of rational guidelines for ensuring functional tissue regeneration, which represents a breakthrough towards creating cardiovascular replacements that are superior to current treatment options. Moreover, it enables me to start my own independent research group in this field.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.