Innovating Works

DNA-DOCK

Financiado
Precision Docking of Very Large DNA Cargos in Mammalian Genomes
Gene editing has developed at breath-taking speed. In particular CRISPR/Cas9 provides a tool-set thousands of researchers worldwide now utilize with unprecedented ease to edit genes, catalysing a broad range of biomedical and indu... Gene editing has developed at breath-taking speed. In particular CRISPR/Cas9 provides a tool-set thousands of researchers worldwide now utilize with unprecedented ease to edit genes, catalysing a broad range of biomedical and industrial applications. Gene synthesis technologies producing thousands of base pairs of synthetic DNA have become affordable. Current gene editing technology is highly effective for local, small genomic DNA edits and insertions. To unlock the full potential of this revolution, however, our capacities to disrupt or rewrite small local elements of code must be complemented by equal capacities to efficiently insert very large synthetic DNA cargos with a wide range of functions into genomic sites. Large designer cargos would carry multicomponent DNA circuitry including programmable and fine-tuneable functionalities, representing the vital interface between gene editing which is the state-of-the-art at present, and genome engineering, which is the future. This challenge remained largely unaddressed to date. We aspire to resolve this bottleneck by creating ground-breaking, generally applicable, easy-to-use technology to enable docking of large DNA cargos with base pair precision and unparalleled efficiency into mammalian genomes. To achieve our ambitious goals, we will apply a whole array of sophisticated tools. We will unlock a small non-human virus to rational design, creating safe, flexible and easy-to-produce, large capacity DNA delivery nanodevices with unmatched transduction capability. We will exploit a range of techniques including Darwinian in vitro selection/evolution to accomplish unprecedented precision DNA integration efficiency into genomic sites. We will use parallelized DNA assembly methods to generate multifunctional circuits, to accelerate T cell engineering, resolving unmet needs. Once we accomplish our tasks, our technology has the potential to be exceptionally rewarding to the scientific, industrial and medical communities. ver más
31/08/2025
2M€
Duración del proyecto: 75 meses Fecha Inicio: 2019-05-22
Fecha Fin: 2025-08-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2019-05-22
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2018-ADG: ERC Advanced Grant
Cerrada hace 6 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
UNIVERSITY OF BRISTOL No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5