The world is on a seemingly irreversible path towards a more privacy-oriented and decentralized mode of
storing and operating on data. A lot of this transformation is being enabled by advanced cryptography that’s
designed to cut o...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PROMETHEUS
PRivacy preserving pOst quantuM systEms from advanced crypTo...
5M€
Cerrado
PID2019-109379RB-I00
CRIPTOGRAFIA PARA RETOS DIGITALES EMERGENTES: ESCENARIOS MUL...
37K€
Cerrado
QUBIP
Quantum-oriented Update to Browsers and Infrastructures for...
6M€
Cerrado
ISOCRYPT
Isogeny based Toolbox for Post quantum Cryptography
2M€
Cerrado
HIPS
High Performance Secure Computation with Applications to Pri...
2M€
Cerrado
ECAP
Efficient Cryptographic Arguments and Proofs
1M€
Cerrado
Información proyecto PLAZA
Duración del proyecto: 62 meses
Fecha Inicio: 2021-04-19
Fecha Fin: 2026-06-30
Líder del proyecto
IBM RESEARCH GMBH
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The world is on a seemingly irreversible path towards a more privacy-oriented and decentralized mode of
storing and operating on data. A lot of this transformation is being enabled by advanced cryptography that’s
designed to cut out the need for trusted third parties that we rely on today. The effect of this transformation
is a more secure and, at the same time, a more efficient way of interaction in which the manual checks and
audits are instead embedded into the cryptographic protocols themselves. Another technological development
that’s on the horizon is a general-purpose quantum computer, whose utility comes from the fact that it will
be able to solve some problems considerably faster than a classical computer. Because of the multitude of
its positive scientific applications, building such a computer is being vigorously pursued by governments and
private companies. The main negative consequence of quantum computing is that it breaks most of the
cryptography that’s crucial to the privacy transformation.
The main ingredient of privacy-centric cryptography is a zero-knowledge proof for showing knowledge
of an x satisfying f(x) = y without revealing anything else about x. The most compact zero-knowledge
proofs currently rely on the hardness of various mathematical assumptions which are no longer difficult in
the presence of quantum computers. The central objective of the PLAZA project will be to create practical
zero-knowledge proofs that can withstand quantum attacks by basing them on the hardness of lattice problems.
Lattice problems are a very promising set of assumptions upon which to base cryptography and they
are currently being used to create the most efficient quantum-resistant encryption and signature schemes.
Creating more complex, but still practical, lattice-based schemes has so far proved to be a major challenge
mostly due to the difficulty of constructing efficient zero-knowledge proofs – and this is the problem that the
project proposes to solve.