Innovating Works

VASCOVID

Financiado
PORTABLE PLATFORM FOR THE ASSESSMENT OF MICROVASCULAR HEALTH IN COVID 19 PATIENT...
PORTABLE PLATFORM FOR THE ASSESSMENT OF MICROVASCULAR HEALTH IN COVID 19 PATIENTS AT THE INTENSIVE CARE As COVID-19 spreads worldwide, the surge in patients requiring intensive care unit (ICU) admission has been overwhelming to the healthcare systems. Critical care triage to allow the rationing of scarce ICU resources is needed but... As COVID-19 spreads worldwide, the surge in patients requiring intensive care unit (ICU) admission has been overwhelming to the healthcare systems. Critical care triage to allow the rationing of scarce ICU resources is needed but is hindered due to lack of personalization. The management of acute respiratory failure and hemodynamics is critical at the ICU. In fact, of the seven million COVID-19 cases (end of May 2020) 3-12% required mechanical ventilation which forms the primary target of VASCOVID where we focus on; (1) patient stratification derived from endothelial function evaluation, and, (2) evaluation of cardiopulmonary interactions that personalizes conservative ventilation strategies in order to avoid ventilator-induced lung injury and readiness to wean from the ventilator. VASCOVID will deploy and mature our portable, non-invasive and real-time health monitoring platform for this purpose. This platform combines two bio-photonics technologies, time-resolved near-infrared spectroscopy and diffuse correlation spectroscopy, and is the fruit of long-term collaboration between core project partners in two European projects (BabyLux and LUCA) where high technology readiness level have been achieved for neuro-monitoring and thyroid cancer screening. VASCOVID will adapt the platform to meet the needs of a typical ICU dealing with COVID-19 and other patients requiring ventilation, as well as to leverage large-scale testing of new treatment procedures and therapies aimed to address microvascular impairment and to reduce extubation failure on ICU patients weaning out of mechanical ventilation life-support. The platform is easy to deploy, cost-effective and provides real-time fast results and its transition to clinical practice will be eased through this project by pushing CE certification. Our inter-disciplinary consortium is well-suited for these activities and will interact closely with our on-going clinical study spanning four countries and a dozen hospitals. ver más
31/05/2023
2M€
Duración del proyecto: 32 meses Fecha Inicio: 2020-09-22
Fecha Fin: 2023-05-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2023-05-31
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
FUNDACIO INSTITUT DE CIENCIES FOTONIQUES Otra investigación y desarrollo experimental en ciencias naturales y técnicas asociacion
Perfil tecnológico TRL 4-5 50K