Innovating Works

SENNET

Financiado
Porous Networks for Gas Sensing
Air pollution is one of the most pressing environmental challenges worldwide. While outdoor air pollution appears often in the media, the effects of indoor air pollution are not to be underestimated since the average person spends... Air pollution is one of the most pressing environmental challenges worldwide. While outdoor air pollution appears often in the media, the effects of indoor air pollution are not to be underestimated since the average person spends about 22 h per day indoors. Many chemicals that decrease the quality of indoor air are emitted by carpets, paints, furniture, etc. The majority of these pollutants are volatile organic compounds (VOCs). Since VOCs can cause not only discomfort but also debilitating or even fatal conditions, it is desirable to measure VOC concentrations with high spatial and temporal resolution, via low-cost but reliable miniature sensors. However, selectively measuring harmful VOCs is particularly challenging because of the low concentration of the analyte and the multitude of interfering compounds present in indoor air. Currently available miniature sensors (e.g., metal oxide semiconductor sensors) typically cannot distinguish a VOC of interest from, for instance, an air freshener. SENNET will develop novel sensors for the selective detection of priority VOCs, based on leveraging the adsorption properties of tuneable porous materials, namely metal-organic frameworks (MOFs) and zeolites. To do so, we will bridge the gap between two fields, namely porous crystalline materials and sensor technology, that have thus far been separated by traditional subject boundaries. SENNET is the first training network that will tackle this challenge, and will do so by combining expertise in chemistry, physics, materials engineering, and sensors. A coordinated effort by 9 beneficiaries and 7 associated partner organizations from 8 countries guarantees a pan-European approach in a multi-environment context (universities, research centres, SMEs and large companies). The proposed ‘follow-the-challenge’ strategy ensures that young researchers are exposed to a variety of research environments and get involved in each step of the materials & sensors value chain. ver más
31/08/2026
Presupuesto desconocido
Duración del proyecto: 47 meses Fecha Inicio: 2022-09-01
Fecha Fin: 2026-08-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2022-09-01
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Líder del proyecto
KATHOLIEKE UNIVERSITEIT LEUVEN No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5