POROus media: Life and dEath of their wAves and Flames
Turbulent combustion of fossil fuel remains an important source of energy creation and propulsion worldwide, generating pollutant emissions endangering both human health and climate. A major factor inhibiting the mitigation of emi...
Turbulent combustion of fossil fuel remains an important source of energy creation and propulsion worldwide, generating pollutant emissions endangering both human health and climate. A major factor inhibiting the mitigation of emissions pertains to combustion instabilities, i.e.: large pressure oscillations resulting from a coupling between unsteady combustion and pressure waves.
Carrying out the combustion within porous inert media holds great promise for lean combustion, owing notably to a strong heat recirculation effect occurring inside them. Despite the recognition that porous materials are natural wave absorbers, very little has been studied so far regarding the potential synergy between combustion instabilities and porous media. POROLEAF aims to pioneer the field of research residing at the intersection between the disciplines of waves, turbulent combustion, and porous media. A new set of scientific challenges will be introduced, related to the complex flow physics involved in porous media combustion, as well as the difficulty of accessing the physical fields within the pore matrix. To tackle these challenges, I will build on the skills developed during my thesis in the characterization of porous media microstructure, as well as recent advances in 3D printing technology for heat resistant materials, to create porous samples allowing optical access. This will pioneer the way for a new set of state-of-the-art experiments.
I aim to leverage decades of previous work in combustion instabilities and focus on the new behaviors introduced by porous media. In particular, the effects of turbulence, entropy, vaporization, and flame dynamics will need to be re-evaluated in light of porous media interactions. The improved knowledge of these principles will enable unprecedented understanding of the influence of porous media properties on the nonlinear flame response. This will directly assist in the design of cleaner and more stable combustion processes.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.