Innovating Works

PITS3D

Financiado
Polymer Informatics Tools for Sustainable 3D printing
Polymer informatics supports sustainable development goals by implementing versatile computational tools which allow users to move the polymer design from the laboratory to the digital world. To connect the links between the struc... Polymer informatics supports sustainable development goals by implementing versatile computational tools which allow users to move the polymer design from the laboratory to the digital world. To connect the links between the structure, properties and performance of the polymer materials, many pieces of puzzle need to be collected over a wide range of time and length scales, starting from the quantum and progressing hierarchically towards continuous methods. Due to their relative novelty, systematic bottom-up approaches for biodegradable polymers are in short supply. Owing to their rich structure stemming from the natural origin, they need to be simulated with a great detail, what leads to an increased computational complexity and researchers’ frustration. Consequently, the computational studies struggle to keep pace with the emerging applications and technologies such as additive manufacturing. PITS3D project aims to speed up the progress in the field by proposing a systematic bottom-up study of two biodegradable polymers widely used in 3D printing techniques. The atomistic description of the local processes of the selected samples represents the first pillar of the approach. In the second stage, the computational study is extended to longer time and length scales, while going beyond the state-of-the-art by mimicking the characteristics of commercially-produced biodegradable polymers. By providing the simulation input files as open-source starting packs, PITS3D aims to encourage the further development of these computational tools. Another objective is to bridge a gap between the theoretically studied systems and those used for the 3D printing, by establishing an iterative passage of properties between the computational and experimental techniques. The combination of both approaches optimizes the use of resources, providing economic and ecological benefits and represents a unique training opportunity for the fellow as well as for the students of the host institute. ver más
31/08/2025
UCA
138K€
Duración del proyecto: 25 meses Fecha Inicio: 2023-07-18
Fecha Fin: 2025-08-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-07-18
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 138K€
Líder del proyecto
UNIVERSIDAD DE CÁDIZ No se ha especificado una descripción o un objeto social para esta compañía.
Total investigadores 1444