Pollinator-assisted plant natural selection and breeding under climate change pr...
Food security is threatened by climate change, with heat and drought being the main stresses affecting crop physiology and ecosystem services, such as plant-pollinator interactions. Despite the increasing relevance of flowers in s...
Food security is threatened by climate change, with heat and drought being the main stresses affecting crop physiology and ecosystem services, such as plant-pollinator interactions. Despite the increasing relevance of flowers in sensing the stress, phenotyping platforms aim at identifying genetic traits of resilience by assessing the physiological status of the plants, usually through remote sensing-assisted vegetative indexes, but find strong bottlenecks in quantifying flower traits and in accurate genotype-to-phenotype prediction. However, as the transport of photoassimilates from leaves (sources) to flowers (sinks) is reduced in low-resilient plants, flowers are better indicators than leaves of plant well-being. Indeed, the chemical composition of flowers changes in response to heat and drought, as it does the amount of pollen and nectar that flowers produce, which ultimately serve as food recourses for the pollinators. DARkWIN proposes to track and rank pollinators’ preferences for flowers of a tomato mapping population exposed to heat and drought as a measure of functional source-to-sink relationships. To achieve this goal, DARkWIN will develop a pollinator-assisted selection and phenotyping platform for automated quantification of Genotype x Pollinator x Environment interactions through a bumblebee geo-positioning system. Pollinator-assisted selection for agriculture will be validated by a multi-omics dataset of unprecedented dimensions in a mapping population of tomato, including floral metabolic, transcriptomic, and ionomic traits, as well as mapping candidate genes, linking floral traits, pollinator preferences, and plant resilience. Moreover, DARkWIN will deliver tomato F1 pre-commercial varieties based on the natural biological process of pollinatordriven selection under climate change conditions. This radical new approach can change the current paradigm of plant phenotyping and find new paths for crop breeding assisted by ecological decisions.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.