The proliferation of artificial intelligence (AI) has led to a major advancement in many fields. It has enabled achieving non-precedent achievements such as human-level image recognition, intelligible language translation, and acc...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-116907RB-I00
INTELIGENCIA ARTIFICIAL INSESGADA Y EXPLICABLE PARA IMAGENES...
164K€
Cerrado
Deep4MI
Deep Learning for Medical Imaging Learning Clinically Usefu...
2M€
Cerrado
MIA-NORMAL
Medical Image Analysis with Normative Machine Learning
2M€
Cerrado
DL-I-PBraTSC
Deep Learning Based Interpretable Pediatric Brain Tumors Seg...
Cerrado
FJC2021-047659-I
From accurate to trustworthy clinical AI in cancer imaging
65K€
Cerrado
Información proyecto P3D Endoscopy
Duración del proyecto: 17 meses
Fecha Inicio: 2023-10-01
Fecha Fin: 2025-03-31
Líder del proyecto
TEL AVIV UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The proliferation of artificial intelligence (AI) has led to a major advancement in many fields. It has enabled achieving non-precedent achievements such as human-level image recognition, intelligible language translation, and accurate medical diagnosis. The main research goal of the PI’s ERC-StG SPADE project is to use tools for data modelling to improve our understanding and usage of deep learning (DL) and thus enhance its performance in medical problems and computational imaging [1-4]. One of the fields that could greatly benefit from such progress is sensitive medical treatment, using AI-based medical devices. Such devices can initially assist the physicians with a more accurate diagnosis, and potentially save lives. As such technology matures, the information provided to the physicians will be richer, thus, leading to more accurate diagnoses to the cases at hand. Such advancement will allow high quality and efficient treatment to a much wider public. The scope of this POC is to apply intelligent optical imaging methods developed in the SPADE project, specifically, for introducing reliable 3D and polarization information to medical imaging devices.