POLAR BEAR RESPONSE TO GLOBAL WARMING Insights from shotgun sequencing of the P...
POLAR BEAR RESPONSE TO GLOBAL WARMING Insights from shotgun sequencing of the Polar Bear Genome
The polar bear (Ursus maritimus) is the top predator of the northern hemisphere polar regions and the human iconic symbol of the Arctic and climate change itself. Due to projections of accelerated global environmental changes lead...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto POLAR BEAR GENOME
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
258K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The polar bear (Ursus maritimus) is the top predator of the northern hemisphere polar regions and the human iconic symbol of the Arctic and climate change itself. Due to projections of accelerated global environmental changes leading to dramatic reductions in range size over the next 50–100 years, global warming is believed to be the most important long-term threat to the polar bear’s future survival. However, these current projections are based on short-term ecological, behavioural, and genetic studies, and no scientific studies exist that directly quantify the effect of climate-induced environmental changes on the species. This study will apply novel shotgun sequencing methods to build a genome-wide SNP (single nucleotide polymorphism) library of the polar bear genome, initially using modern populations, and subsequently transferring these methods to subfossil samples. By projecting the temporal genetic data against precise estimates of past climatic events derived from Arctic ice and lake cores, we will be able to estimate the precise timing, duration, and effects of past demographic changes. By understanding the significance of how environmental perturbations affected the species in the past, the first informed predictions can be made of how polar bears, and ultimately other Arctic marine mammals, will respond to the ongoing global warming that is threatening their ecosystem. This study will generate the first population genomic dataset of its kind, using both ancient and modern samples. The refinement of current laboratory methods and the development of analytical methods during the statistical analysis of the data will significantly contribute to the fields of evolutionary genetics and ancient DNA. In addition, the study will make an important contribution to polar bear research by answering the fundamentally important question of how polar bears responded to past climate changes.