Plastic ceramic films to improve safety of modern nuclear energy
Aim of the project PLASTICERA is to prevent nuclear accidents similar to Fukushima Daiichi from happening in Europe. Primary objective of PLASTICERA is to develop a new accident tolerant fuel (ATF) concept for modern nuclear light...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto PLASTICERA
Duración del proyecto: 12 meses
Fecha Inicio: 2019-03-18
Fecha Fin: 2020-04-15
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Aim of the project PLASTICERA is to prevent nuclear accidents similar to Fukushima Daiichi from happening in Europe. Primary objective of PLASTICERA is to develop a new accident tolerant fuel (ATF) concept for modern nuclear light water reactors (LWR). Today, nuclear energy is an essential environmental issue as it is one of the key scalable technologies to battle climate change. Promoting the use of nuclear energy is largely based on public opinion and therefore creating safer and more sustainable ways to produce nuclear energy is more important than ever. The concept of PLACTICERA relies on amorphous oxide thin films to protect the primary fuel cladding from catastrophic damage during nuclear accident conditions. The oxide thin film can provide unique combination of a strong oxygen diffusion barrier with the capability to accommodate the plastic strain originating from the fuel bar thermal expansion. This functional coating could significantly delay the onset of uncontrollable degradation of the primary fuel cladding, allowing timely emergency cooling, and preventing the release of radioactive substances. The primary objective will be achieved by training Dr. Erkka J. Frankberg (fellow) with new skills in disruptive material manufacturing technologies capable of producing ceramic materials, especially amorphous oxides, with prerequisites for low temperature plasticity. These materials will then be tested for mechanical and corrosion properties in relevant environment resembling LWR normal operating conditions and conditions occurring during loss of cooling water (LOCA) -type accident.