Genomic DNA is packaged by histone proteins that carry a multitude of post-translational modifications, which reflect cellular transcriptional states. When cells die, fragmented chromatin retaining histone modifications is release...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EPINuc
Single Molecule Epigenetic Analysis of Plasma Isolated Nucle...
150K€
Cerrado
MonitorMS
Monitor Multiple Sclerosis evolution using body fluids deriv...
223K€
Cerrado
PTQ-17-09296
Generación de librerías de ADN GEUS desde muestras de ADN li...
88K€
Cerrado
ATLAS
Development of Laser Based Technologies and Prototype Instru...
4M€
Cerrado
ModLogic
Systematically Dissecting the Regulatory Logic of Chromatin...
2M€
Cerrado
RAPID
Chromatin dynamics resolved by rapid protein labeling and bi...
2M€
Cerrado
Información proyecto cfChIP
Duración del proyecto: 60 meses
Fecha Inicio: 2021-07-29
Fecha Fin: 2026-07-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Genomic DNA is packaged by histone proteins that carry a multitude of post-translational modifications, which reflect cellular transcriptional states. When cells die, fragmented chromatin retaining histone modifications is released to the circulation. Recently, we pioneered chromatin immunoprecipitation of cell-free nucleosomes carrying active chromatin marks followed by sequencing (cfChIP-seq). Our results show that cfChIP-seq provides multidimensional epigenetic information and that the plasma epigenome contains rich information about the identity and the transcriptional state of the originating cells.
Liquid biopsies already entered the clinical practice, yet current methodologies use them to assess genetic information. Our breakthrough methodology opens an unprecedented opportunity to delineate the transcriptional state of specific cell types and different pathologic states. Here we aim to translate plasma epigenomic information into medically relevant findings. The challenge is recovering the states of the cells represented in the circulation and relate these to pathological processes. Our working hypothesis is that this task is attainable by probabilistic modeling exploiting knowledge about epigenomics and transcription programs in health and disease. In this project we will assay plasma samples from multiple patient and donor cohorts to characterize the relation between tissue gene expression and circulating chromatin profiles, to recover the immune system status and chart how it changes with disease progression and response to treatment, and to monitor transplant patients for early detection of rejection.
Our extensive preliminary data, our expertise in probabilistic modeling and genomics and our collaborators’ access to relevant patient cohorts support the projects’ feasibility. Plasma epigenomics will open a new non-invasive window into tissue dynamics in living humans, beyond current liquid biopsy technologies, with far-reaching medical implications.