Plant movements and mechano perception from biophysics to biomimetics
How to transport fluids, move solids or perceive mechanical signals without the equivalent of pumps, muscles or nerves? This ongoing challenge, which is relevant from microfluidics to robotics, has long been solved by plants. In t...
How to transport fluids, move solids or perceive mechanical signals without the equivalent of pumps, muscles or nerves? This ongoing challenge, which is relevant from microfluidics to robotics, has long been solved by plants. In this project, I wish to gather my cross-disciplinary background in plant mechanics, soft matter physics and granular materials to address some of the fundamental mechanisms used by plants to perceive mechanical stimuli and generate motion. The project focuses on three major issues in plant biophysics, which all involve the coupling between a fluid (water in the vascular network or in the plant cell, cellular cytoplasm) and a solid (plant cell wall, starch grains in gravity-sensing cells):
(i) How mechanical signals are perceived and transported within the plant and what is the role of the water pressure in this long-distance signalling.
(ii) How plants sense and respond to gravity and how this response is related to the granular nature of the sensor at the cellular level.
(iii) How plants perform rapid motion and what is the role of osmotic motors and cell wall actuation in this process, using the carnivorous plant Venus flytrap as a paradigm for study.
The global approach will combine experiments on physical systems mimicking the key features of plant tissue and in situ experiments on plants, in strong collaboration with plant physiologists and agronomists. Experiments will be performed both at the organ level (growth kinematics, response to strain and force stimuli) and at the tissue and cellular level (cell imaging, micro-indentation, cell pressure probe). This multi-disciplinary and multi-scale approach should help to fill the gap in our understanding of basic plant functions and offers new strategies to design smart soft materials and fluids inspired by plant sensors and motility mechanism.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.