Physics informed algorithms for sensing and navigating turbulent environments
Living systems developed dramatically efficient strategies to sense and navigate turbulent environments. Understanding these strategies is key to many real world applications required to function in the presence of turbulence: fro...
Living systems developed dramatically efficient strategies to sense and navigate turbulent environments. Understanding these strategies is key to many real world applications required to function in the presence of turbulence: from search and rescue to demining and patrolling. While much is known on navigation in smooth environments, these approaches fail in the presence of turbulence. RIDING aims at elucidating the computations organisms use to extract useful information from turbulent stimuli and navigate to a target. A key observation is that organisms rely on multiple sensory cues, despite the distortions due to turbulence. Explaining this puzzle requires blending fluid dynamics with biological behavior. I will achieve this goal by developing physics-based algorithms elucidating the computations that support three fundamental pillars of biological behavior: 1) combine navigation with sensing, 2) balance multiple senses, 3) adapt to different environments. The result will be a comprehensive theory integrating biological behavior in a computational framework based on fluid dynamics. Predictions will be tested via experiments on fishes, known to routinely perform turbulent navigation combining multiple senses across distinct sensory environments. This multidisciplinary project leverages methods from physics, computer science and biology. In summary, the objectives of RIDING are to:
O1. Assemble a massive dataset of chemical and mechanical signals emitted by a target using computational fluid mechanics and asymptotic methods.
O2. Develop algorithmic approaches for sensing and navigation using tools from machine learning trained on multiple sensory signals from O1.
O3. Examine how sensory signals from O1 and algorithms from O2 vary in different environments.
O4. Test predictions by recording prey capture in the laboratory using three species of fish. Analysis includes a fascinating species which evolved unique sensory legs to catch prey in different environmentver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.