Physical bottom Up Multiscale Modelling for Automotive PEMFC Innovative performa...
Physical bottom Up Multiscale Modelling for Automotive PEMFC Innovative performance and Durability optimization
Proton Exchange Membrane Fuel Cells (PEMFCs) are complex nonlinear systems. In order to improve their durability, efficiency and to decrease the cost, time of development, design of new diagnostic tools is crucial.Powerful mathema...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto PUMA MIND
Duración del proyecto: 35 meses
Fecha Inicio: 2012-12-17
Fecha Fin: 2015-12-16
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Proton Exchange Membrane Fuel Cells (PEMFCs) are complex nonlinear systems. In order to improve their durability, efficiency and to decrease the cost, time of development, design of new diagnostic tools is crucial.Powerful mathematical models of the dynamic behaviour of PEMFCs are necessary for the design and improvement of diagnostic tools. The project PUMA MIND will enhance the understanding of interaction, competitions and synergies among the mechanisms at multiple scales and lead to the development of robust dynamic macroscopic models for control-command purposes with predictive capabilities.The novel mathematical models developed by PUMA MIND will be tested by an experimental work, in order to ensure the applicability on commercial attainable components and catalysts. The most suitable catalysts for the MEA manufacturing technology will be used for these experiments. The implementation of the developed models on the mentioned above catalysts might allow a significant impact, and might also contribute to the most promising solutions based on current EU industrial available components. Operation conditions and control strategies to enhance the durability of automotive PEMFC will be derived on the basis of the multiscale modeling approach proposed by PUMA MIND.