Innovating Works

INTERACT

Financiado
Phylogenetic association mapping and its application to secondary metabolite var...
Phylogenetic association mapping and its application to secondary metabolite variation in Brassicaceae species During the past years, great progress has been made in connecting phenotypes to genotypes based on within-species variation. However, the more dramatic variation that can be found between species has not been explored for phenotyp... During the past years, great progress has been made in connecting phenotypes to genotypes based on within-species variation. However, the more dramatic variation that can be found between species has not been explored for phenotype/genotype associations so-far. Using classical genetics to mine between-species variation is mostly impossible, because crosses between distinct species hardly work and their genomes are usually highly rearranged. The goal of this project is to develop unprecedented genomics-based methods for inter-species (phylogenetic) association mapping, which can find signals even in highly re-arranged genomes of different species. To ensure that these methods are also useful in practice, we will apply them to the variation in secondary metabolites within the Brassicaceae plant family. Secondary metabolites are highly variable, genetically controlled, easy to measure and have broad application in cancer prevention, pest control and food design. Given the great potential of phylogenetic association mapping in general and secondary metabolites in particular, our work promises to be ground-breaking and have profound impact on many different fields of genetic research. Specifically, our work plan includes the following points: I) We will develop strategies for phylogenetic association mapping and implement them in publicly-available software. II) We will establish a panel of inbred lines from ~200 Brassicaceae species and generate whole-genome assemblies for each of them. III) We will exemplify the usefulness of phylogenetic association mapping by correlating the diversity of secondary metabolites to the differences in the respective genomes and validate the results by transforming or mutating candidate genes in appropriate species. ver más
31/01/2025
1M€
Duración del proyecto: 69 meses Fecha Inicio: 2019-04-10
Fecha Fin: 2025-01-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2019-04-10
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2018-STG: ERC Starting Grant
Cerrada hace 7 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
LUDWIGMAXIMILIANSUNIVERSITAET MUENCHEN No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5