The conversion of sunlight photons to electrons is the essence of the natural photosynthesis that powers life. Dedicated antennas funnel the sun’s energy towards reaction centres. Amazingly, nature reaches almost perfect photon-to...
ver más
Descripción del proyecto
The conversion of sunlight photons to electrons is the essence of the natural photosynthesis that powers life. Dedicated antennas funnel the sun’s energy towards reaction centres. Amazingly, nature reaches almost perfect photon-to-electron conversion efficiency, while it regulates down at high light level for protection and survival.
How does nature dynamically re-organize the membrane architecture, its packing, order, diffusion, on light stress? Which pathways are taken to charge separation? What is the role of fluctuations, coherences, color and vibrations?
My group recently succeeded in first detection of the fs spectral progression of a single exciton, the nanoscale tracking of electron transport and reveal energy disorder of a single photosynthetic complex. These pioneering results, together with our expertise in fs pulse control and nanoimaging, set the grounds to now address photosynthetic light-to-charge transfer in real nanospace and ultrafast. Specific objectives are:
Energy transport on the nanoscale: tracking spatiotemporal membrane transport by super-resolved transient optical microscopy and nanophotonic light localization: to reveal disorder and quantify diffusion.
Light to charge: photo-current detection of the energy flow: by ultrafast photo-thermoelectric graphene and photo-electrochemical detection I will probe charge separation of the reaction center directly, quantify rate and efficiency.
Multidimensional spectra on the nanoscale: by collinear 2D spectroscopic imaging with photocurrent and fluorescence detection, I will map the development of the energy landscape, at special membrane spots, ultimately on a single complex.
Functional imaging: visualize the dynamic light-response of the membrane architecture, the changes in packing density, (dis)order, diffusion and pathways to charge separation.
The novel tool-set of FastTrack and the insights on nature’s energy strategies are directly relevant for artificial photosynthesis and solar technology.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.