Photonic optimisation of multiple quantum well structures for single and dual ju...
Photonic optimisation of multiple quantum well structures for single and dual junction solar cells
"Concentrator photovoltaic solar systems achieve some of the highest module power conversion efficiencies and have the potential for clean electricity generation in the world's deserts and arid regions. Sunlight is collected by in...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"Concentrator photovoltaic solar systems achieve some of the highest module power conversion efficiencies and have the potential for clean electricity generation in the world's deserts and arid regions. Sunlight is collected by inexpensive optical collectors and focused upon small but highly efficient solar cells. Still, the costs of the overall system is high and further improvements must be done to enable the general implantation of this technology. This project will raise the efficiency of those highly efficient multi-junction solar cells by using nanotechnology to tailor the optical and electronic properties of the photovoltaic material. Key to the project is the design of internal optical modes in the solar cell, exploiting quantum effects, maximising absorption, reducing radiative loss and enabling the cells to become more tolerant to the changes in the solar spectrum that occur naturally during the day and season of the year.These designs will then be demonstrated in single and monolithic dual-junction prototype solar cells with the potential to break the present world record for a dual-junction solar cell of 31.7% and aiming to a 35% efficient devices."