Photoionic Light Modulators for Electrochromic Devices
The fast increase of telecommunications and technology continuously push towards low energy and complex functionalities. New functionalities necessarily imply silicon technology to be extended to other materials and systems with o...
The fast increase of telecommunications and technology continuously push towards low energy and complex functionalities. New functionalities necessarily imply silicon technology to be extended to other materials and systems with optical and electrical properties beyond those of Si alone. Optical modulators are one of the principal components constituting photonic circuits directly determine the energy costs and systematic performances of optical devices. Among modulators, electrochromic devices (ECD) regulate light intensity by applying a low voltage. Despite inorganic oxide materials present low energy consumption, limitations arise to fabricate fast switching tunable light EC devices . A possible solution to overcome these limitations are mixed ionic-electronic conductors (MIEC).Their optical properties' change is based on electrochemically driven reversible redox processes regulated by an electric field. Phides aims at developing a novel solid state NV electrochromic devices based on the implementation of rare-earths and strain engineering of functional oxide thin films to tune the change of color contrast and increase switching times. Photo-ionic materials have the potential to deliver robust, fast and energy efficient NV electrochromic devices. However, photo-ionic control is still at an early stage of the R&D process and many aspects still needs to be improved to deliver a competitive device. In essence, Phides will provide: i) An electrochromic guided device based on the electrochemical insertion of oxygen ions; ii) A large and analogically tunable electrochromic response of the cell; ii) A fast electrochromic switching capabilities through the implementation of nanoionics concept for boosting ionic motion; iii) An improved understanding of the oxygen-ion intercalation mechanisms in oxide perovskite thin films; and iv) Device scalability and miniaturization.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.