Photoelectrosynthetic processes in continuous-flow under concentrated sunlight:...
Photoelectrosynthetic processes in continuous-flow under concentrated sunlight: combining efficiency with selectivity
To be the first CO2-neutral continent by 2050, Europe needs to develop and implement disruptive new technologies, based on scientific breakthroughs. In this regard, utilization of CO2 and organic waste as feedstock to generate val...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TED2021-129810B-C21
DESARROLLO DE REACTORES FOTOELECTROQUIMICOS PARA LA CONVERSI...
242K€
Cerrado
SolarFUEL
Gas Diffusion Electrodes and Flow Cells for Photoelectrochem...
213K€
Cerrado
PID2019-104050RA-I00
CONVERSION IMPULSADA POR LA LUZ DE CO2 EN COMBUSTIBLES UTILI...
79K€
Cerrado
DESIRED
Direct co-processing of CO2 and water to sustainable multica...
3M€
Cerrado
BES-2010-032400
VALORIZACION DE CO2 MEDIANTE PROCESOS FOTOCATALITICOS
43K€
Cerrado
JCI-2010-07853
Valorización de CO2 por medio de procesos fotocataliticos en...
101K€
Cerrado
Información proyecto SunFlower
Duración del proyecto: 60 meses
Fecha Inicio: 2022-05-04
Fecha Fin: 2027-05-31
Líder del proyecto
SZEGEDI TUDOMANYEGYETEM
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
To be the first CO2-neutral continent by 2050, Europe needs to develop and implement disruptive new technologies, based on scientific breakthroughs. In this regard, utilization of CO2 and organic waste as feedstock to generate valuable products will play a key role in turning the chemical industry on a more sustainable, circular path. In the SunFlower project, we are going to demonstrate that two high-value processes (CO2 or CO reduction and glycerol oxidation will be studied first) can be synergistically coupled to produce chemicals (such as ethylene and lactic acid) and fuels, using novel photoelectrode assemblies (both photocathodes and photoanodes), original photoelectrochemical (PEC) device architectures, and automated processes. The SunFlower project is based on the following three hypotheses:
1. Proper engineering of continuous-flow PEC cells operating under concentrated sunlight will allow current densities similar to the electrochemical (EC) methods.
2. One semiconductor alone can supply the necessary energy input for bias-free operation of PEC cells, while generating two high-value products.
3. PEC methods can provide superior selectivity compared to their EC counterparts, even at high current density operation (as the current density and potential can be decoupled).
To validate our hypotheses, we are going to use for the first time:
• The pairing of two high-value generating redox processes (none of them being H2 or O2 evolution).
• Concentrated sunlight (which has only been used for water-splitting so far).
• Custom-designed and developed PEC cells, elaborating on the photo-gas diffusion electrode concept.
• Machine learning, based on the broad dataset collected by the sensors built in the PEC system, optimizing the performance at a system level.
The proposed combination of these novel approaches will be of groundbreaking nature, therefore, it opens a whole new arena of solar energy conversion.