Innovating Works

MePhoCat

Financiado
Photocatalytic Methylations via Direct Methane Functionalization Methane is one of the most abundant, underutilized carbon-based chemical feedstocks on the planet. Moreover, the simplest alkane is one of the most potent greenhouse gases in the atmosphere due to which United Nations has lunched... Methane is one of the most abundant, underutilized carbon-based chemical feedstocks on the planet. Moreover, the simplest alkane is one of the most potent greenhouse gases in the atmosphere due to which United Nations has lunched the global methane initiative for achieving a 30% reduction in its emission by 2030. The current methodologies for the utilization and disposal of methane gas suffer due to being cost intensive and non-sustainable. As a result, there is an urgent need to develop protocols, which allow the transformation of this greenhouse gas into valuable products in a profitable manner. On the other hand, the selective substitution of C-H bonds in drug candidates to C-Me bonds have often led to an average 100-fold increase in their biological activity (Magic Methyl Effect). As a result, protocols which allow the selective incorporation of methyl groups into organic substrates have gained wide attention. The proposed project aims at developing efficient catalytic processes that allow direct methane functionalization by using it as a methylating reagent in a variety of C-Me bond forming reactions through dual transition metal photoredox catalysis. New pathways for the direct use of methane in reactions such as cross-couplings, C-H methylations and cascade cyclizations will be developed based on this novel bimetallic photocatalytic strategy. It is envisioned that the proposed research will open new avenues for the utilization of methane as feedstock for the synthesis of drugs and biorelevant molecules, thus contributing to the reduction in the emissions of this gas and helping to reach UN’s global methane initiative and to EU’s European Green Deal objective of achieving zero net greenhouse gas emission by 2050. ver más
31/07/2026
Presupuesto desconocido
Duración del proyecto: 26 meses Fecha Inicio: 2024-05-03
Fecha Fin: 2026-07-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2024-05-03
HORIZON EUROPE No se conoce la línea exacta de financiación, pero conocemos el organismo encargado de la revisión del proyecto.
Líder del proyecto
UNIVERSIDAD DE SANTIAGO DE COMPOSTELA No se ha especificado una descripción o un objeto social para esta compañía.