PHOtoactivated Metal Oxide TRansport layers for Indoor Perovskite Photovoltaics
Harnessing indoor lighting available in buildings has the potential to power the next generation of Internet of Things, creating a more environmentally and economically sustainable ecosystem to accelerate future innovation. Indoor...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2014-55200-R
DISPOSITIVOS ELECTROLUMINISCENTES Y FOTOVOLTAICOS EFICIENTES...
121K€
Cerrado
MAT2016-76892-C3-1-R
PEROVSKITAS FOTOVOLTAICAS ESTABILIZADAS DE ALTO RENDIMIENTO
242K€
Cerrado
MAT2017-88821-R
LEDS Y CELULAS SOLARES BASADAS EN PEROVSKITAS
182K€
Cerrado
MAT2017-88905-P
FOTOVOLTAICA BASADA EN PEROVSKITAS: EXPLORANDO LOS LIMITES
65K€
Cerrado
ENE2016-79282-C5-3-R
GRAFENO EN CELULAS SOLARES DE PEROVSKITAS Y ORGANICAS: CARAC...
97K€
Cerrado
RTI2018-095362-A-I00
CONTROL DE LA RECOMBINACION RADIATIVA EN CELULAS SOLARES FLE...
109K€
Cerrado
Información proyecto PHOMOTRIPP
Duración del proyecto: 37 meses
Fecha Inicio: 2023-07-07
Fecha Fin: 2026-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Harnessing indoor lighting available in buildings has the potential to power the next generation of Internet of Things, creating a more environmentally and economically sustainable ecosystem to accelerate future innovation. Indoor photovoltaics enable this by utilising artificial light sources such as white light-emitting diode and fluorescent lamps to negate the limitations imposed by battery-powered systems. Among the emerging photovoltaic technologies, indoor perovskite solar cells display immense promise and require further study to reach their true potential. The electron transport layer, an integral part of the perovskite solar cell architecture, is of particular interest as its optimisation can lead to overall enhancement of device performance in indoor conditions. Popular metal oxide-based electron transport layers, that offer solution processability, tunable electronic properties, high carrier mobility, and favourable energy level match with the perovskite, continue to suffer from high temperature processing and interfacial defects. Lowering the processing temperature to increase compatibility with flexible devices, diversifying the metal oxide family to develop a wider choice of materials, and formation of metal oxide composites to augment charge transfer and stability, are some measures that can overcome the challenges of the present transport layers and further enhance their properties. This study attempts to achieve this by innovatively combining low temperature photo-annealing and graphene incorporation to produce high quality films of conventional and novel metal oxides, that can be employed in indoor perovskite solar cells to improve overall device efficiency and stability. This proposal is a focussed but significant attempt to fill the gap arising from a lack of concentrated study on electron transport materials, more specifically inorganic metal oxides in the domain of indoor perovskite solar cells.