Innovating Works

Timing-FreePhase

Financiado
Phase, time and correlations in free electron wave packets
Electron emission from matter is a widespread phenomenon in nature, with examples including the photoionization of atoms and molecules, photoemission from solids, and the release of electrons due to ionizing radiation in biology.... Electron emission from matter is a widespread phenomenon in nature, with examples including the photoionization of atoms and molecules, photoemission from solids, and the release of electrons due to ionizing radiation in biology. Complete information about the emitted electrons is contained in the amplitude and phase of their wave packets. While state-of-the-art electron spectroscopy routinely accesses the amplitude of these wave packets, the phase of free electron wave packets remains inaccessible. My team and I aim to develop an experimental technique to measure the phase of free electron wave packets without interfering with their creation mechanism. This will be groundbreaking, as the phase of the free electron wave packet carries information about the quantum mechanical properties of photoionization and the electron in its bound state prior to ionization.We will accomplish this task by constructing a novel, microscopic, ultrafast free-electron-interferometer, in which replicas of the initial free electron wave packet are generated, shifted in momentum space, and brought to interference. At the heart of this innovative interferometric scheme are two crossed pulsed standing light waves that interact with the wave packet after its creation on femtosecond timescales. We will scale this approach to be applicable to correlated few-body wave packets by combining the light field interferometer with coincident multi-particle detection in a COLTRIMS reaction microscope.Employing this groundbreaking method, we will address three objectives: (1) We will investigate the time evolution of the phase of an atomic photoelectron wave packet with a linear and with a helical interferometer made from light carrying orbital angular momentum. (2) We will study wave packets emitted from molecules, including chiral molecules. (3) We will examine correlations and entanglement within two-electron wave packets and between photoelectrons and their parent ions ver más
31/03/2030
GUF
2M€
Duración del proyecto: 59 meses Fecha Inicio: 2025-04-01
Fecha Fin: 2030-03-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2023-ADG: ERC ADVANCED GRANTS
Cerrada hace 1 año
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
JOHANN WOLFGANG GOETHEUNIVERSITAET FRANKFURT... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5