Today, the main research trends in decentralized personal health monitoring (PDHM) are on monitoring at longer periods, reducing motion artefacts, and multimodal monitoring. PERSIMMON will push the state-of-the-art by providing pe...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NIGHTINGALE
Connecting Patients and Carers using wearable sensor technol...
5M€
Cerrado
ARCHANGEL
Advanced Remote Continuous patient Health mANaGemEnt SoLutio...
3M€
Cerrado
Smart Tracker
First wearable sensor for real time monitoring and optimisat...
71K€
Cerrado
BES-2010-030294
ENTORNOS UBICUOS INTELIGENTES PARA LA MONITORIZACION DE PERS...
43K€
Cerrado
Dem@Care
Dementia Ambient Care Multi Sensing Monitoring for Intellig...
11M€
Cerrado
EU-TRAINS
Towards an Ecosystem of User-centric devices and services fo...
Cerrado
Información proyecto PERSIMMON
Duración del proyecto: 47 meses
Fecha Inicio: 2024-09-01
Fecha Fin: 2028-08-31
Líder del proyecto
UPPSALA UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Today, the main research trends in decentralized personal health monitoring (PDHM) are on monitoring at longer periods, reducing motion artefacts, and multimodal monitoring. PERSIMMON will push the state-of-the-art by providing personalized and biodegradable multimodal smart sensor patches based on low-cost additive manufacturing. The innovations introduced by PERSIMMON rely on new sensor materials, AI, and digital surface mount technology (SMT). The developed patches will be used in multinodal networks with multimodal nodes on the skin for advanced DPHM, with improved sustainability and circularity. Cloud-based AI sensor fusion will be used for blood pressure and body temperature monitoring, and edge-AI for reducing motion artefacts, selecting good signal conditions, and reduce power consumption at the smart patch. In addition, PERSIMMON will develop new sensor materials for biodegradability, sensor electrodes, and nano-MOS embedded in semi-permeable materials (that will allow gas sensors on the skin with both extended lifetime in multiuse modules and at extreme low cost in disposables). Within 48 months and with the involvement of 13 partners from six countries, PERSIMMON will demonstrate remote DPHM in sport use cases of ski mountaineering and swimming, and in continuous remote monitoring of chronically ill patients in their everyday lives. A production line for additive manufacturing of soft and compliant printed wiring boards based on digital SMT manufacturing, and a 5G gateway for body worn IoT will be demonstrated and made as business cases. The used water-soluble biopolymers and liquid metal interconnects and contacts remove microplastics waste and allow for reuse of clean components and recycled metal without high-temperature or toxic processing. Life cycle analysis, societal uptake, acceptance, and compliance to a circular economy are indeed at the methodological basis of the design and development of new devices and of the appliance tests in PERSIMMON.