Personalized intracranial aneurysm rupture prognosis using Simulation Based 4D F...
Personalized intracranial aneurysm rupture prognosis using Simulation Based 4D Flow MRI and Machine Learning
Unruptured intracranial aneurysm (UIA) is a severe, relatively common cerebrovascular disorder in the general population. Although such aneurysms are mostly asymptomatic and may not burst, a considerable number of UIA patients rem...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RTC-2016-5073-1
A Predictive Geometrical Model for personalized Flow Diverte...
195K€
Cerrado
CURE
Fluid-Structure Interaction and Machine Leaning for Controll...
2M€
Cerrado
PTQ-12-05693
Modelos predictivos basados en Resonancia Magnética Cuantita...
78K€
Cerrado
BARAT
Biomechancial Aneurysm Risk Assessment Trial
71K€
Cerrado
ARTEMIS
Assessment of Reserve Translational Evaluation of Medical I...
240K€
Cerrado
Información proyecto Sim4DFlow
Duración del proyecto: 32 meses
Fecha Inicio: 2021-04-13
Fecha Fin: 2023-12-30
Líder del proyecto
UNIVERSITY OF CYPRUS
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
158K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Unruptured intracranial aneurysm (UIA) is a severe, relatively common cerebrovascular disorder in the general population. Although such aneurysms are mostly asymptomatic and may not burst, a considerable number of UIA patients remain on a high risk of aneurysm rupture, a serious life-threatening condition. Thus, is crucial to decide the timing and type (clipping, coils, and/or stent, flow diverter) of surgical intervention. However, the optimal management strategy of UIA is still open to clinical debate, with recommendations for elective repair after diagnosis based primarily on the aneurysm size and location.
While cardiovascular flow imaging has strong potential to provide the required information for surgical decision-making, currently, flow imaging and assessment is not sufficient to reliably predict rupture and quantitatively assess the risk of haemorrhage. By identifying factors contributing to UIA rupture and by incorporating advanced computational techniques, i.e. 4D flow magnetic resonance imaging (MRI), machine learning (ML) algorithms, and computational fluid dynamics (CFD) models, this project will technologically advance quantification of rupture risk assessment on an UIA patient-specific basis.
This project, Sim4DFlow, core technological aim is to develop a novel simulation-based imaging framework that can integrate the advanced computational techniques of 4D flow MRI, ML, and CFD. Subsequently, Sim4DFlow will test and validate the framework prognostic capacity in the laboratory setting against relevant data of UIA patients.