Perovskite Spiking Neurons for Intelligent Networks
A brain is a complex structure where computing and memory are tightly intertwined at very low power cost of operation, by analog signals across vast quantities of synapse-connected spiking neurons. Animal brains react intelligentl...
A brain is a complex structure where computing and memory are tightly intertwined at very low power cost of operation, by analog signals across vast quantities of synapse-connected spiking neurons. Animal brains react intelligently to environmental events and perceptions. By developing similar Spiking Neural Networks (SNN) we can realize neuromorphic computation systems excellent for dealing with large amounts of noisy data and stimuli and very well suited for perception, cognition and motor tasks. But the current CMOS technologies perform very poorly for emulating the biological brains and their power consumption is large. Currently we cannot replicate biological neurons behaviours with existing design and manufacturing technology. This project aims to develop compact miniature material elements that will emulate closely the complex dynamic behaviour of neurons and synapses, to form SNNs with substantial reduction in footprint, complexity and energy cost for perception, learning and computation. We investigate the properties of metal halide perovskite that have produced excellent photovoltaic devices in the last decade. These perovskites have ionic/electronic conduction, hysteresis, memory effect and switchable and nonlinear behaviour, that make them ideally suited for the realization of devices in close fidelity to biological electrochemically gated membranes in neurons, and information-tracking synapses. We will use the methodology of impedance spectroscopy and equivalent circuit analysis to fabricate devices with dynamic responses emulating the natural neuronal coupling and synchronization. This method will produce the hardware that we need for a preferred spiking computational model, incorporating time, analog physical elements and dynamical complexity as computational tools. As illustration we will show visual object recognition from spiking data provided by a spiking retina by advanced neuristors and dynamic synapses.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.