In the past two decades great progress has been made on the understanding of the remarkable patterns that random tilings of planar domains exhibit. Yet, many models are still out of reach with state-of-the-art techniques and sever...
In the past two decades great progress has been made on the understanding of the remarkable patterns that random tilings of planar domains exhibit. Yet, many models are still out of reach with state-of-the-art techniques and several conjectures remain unsolved. The general purpose of this project is develop new techniques for solving such conjectures and explore new territories. In particular we will look at random tilings models where the randomness is comes from doubly periodic weights on the underlying bipartite graph and their connection to matrix valued special functions. The project includes the following 6 objectives: 1. Develop methods for asymptotic studies of the correlation function for random tilings of large domains, including measures from doubly periodic weights. 2. Derive new asymptotic formulas for matrix-valued orthogonal polynomials by developing a steepest descent method for their Riemann-Hilbert problem. 3. Formulate and investigate natural extensions of Schur processes that include doubly periodic weights that have a special integrable structure, such as the two-periodic Aztec diamond. 4. Study the universality of global fluctuations of the height functions. 5. Prove new Central Limit Theorems fluctuations of linear statistics with for determinantal especially those coming from random tilings. 6. A deeper investigation of the random geometry of the height fluctuations, such as level lines and thick points.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.