The collective behavior of magnetic particles in rotating fields opens challenging physical questions and suggests their role as model systems for nonlinear behavior in soft matter physics. Their non-equilibrium phase diagrams sho...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RYC-2011-07605
Motion, assembly and collective dynamics of paramagnetic col...
184K€
Cerrado
New-DMI
Computational studies of new Dzyaloshinsky-Moriya interactio...
174K€
Cerrado
PID2021-122980OB-C55
SIMULACIONES MULTIESCALA PARA EL CONTROL DE ORDENES MAGNETIC...
169K€
Cerrado
RTI2018-097895-B-C41
NUEVAS FUNCIONALIDADES DIRIGIDAS POR INTERACCIONES ESPIN-ORB...
73K€
Cerrado
PID2020-114839GB-I00
COMPORTAMIENTO COLECTIVO EMERGENTE EN SISTEMAS DE MUCHAS PAR...
191K€
Cerrado
Información proyecto Pattspin
Duración del proyecto: 39 meses
Fecha Inicio: 2023-05-08
Fecha Fin: 2026-08-14
Líder del proyecto
LATVIJAS UNIVERSITATE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
162K€
Descripción del proyecto
The collective behavior of magnetic particles in rotating fields opens challenging physical questions and suggests their role as model systems for nonlinear behavior in soft matter physics. Their non-equilibrium phase diagrams show a wide range of patterns. From the experimental perspective, the control by an external magnetic field of collective dynamics of particles with permanent dipoles, namely magnetic spinners, offers a promising route for applications such as chiral fluids, cargo transport, and targeted delivery. However, the full comprehensive understanding of pattern control of the magnetic-responsive aggregates remains challenging and it lacks a profound investigation, which is crucial for future applications. This proposal aims to investigate the pattern formation in systems of magnetic spinners by theoretical approaches, which are compared to experimental data, to find characteristic parameters and rules. Studies will make use, of particle-resolved computer simulations such as Langevin Dynamics Simulation, based on Langevin equations to investigate the interplay among magnetic, hydrodynamics, and lubrication interaction.