Pathogen phage cooperation during mammalian infection
Most bacterial pathogens are lysogens, namely carry DNA of active phages within their genome, referred to as prophages. While these prophages have the potential to turn under stress into infective viruses which kill their host bac...
Most bacterial pathogens are lysogens, namely carry DNA of active phages within their genome, referred to as prophages. While these prophages have the potential to turn under stress into infective viruses which kill their host bacterium in a matter of minutes, it is unclear how pathogens manage to survive this internal threat under the stresses imposed by their invasion into mammalian cells. In the proposed project, we will study the hypothesis that a complex bacteria-phage cooperative adaptation supports virulence during mammalian infection while preventing inadvertent killing by phages. Several years ago, we uncovered a novel pathogen-phage interaction, in which an infective prophage promotes the virulence of its host, the bacterial pathogen Listeria monocytogenes (Lm), via adaptive behaviour. More recently, we discovered that the prophage, though fully infective, is non-autonomous- completely dependent on regulatory factors derived from inactive prophage remnants that reside in the Lm chromosome. These findings lead us to propose that the intimate cross-regulatory interactions between all phage elements within the genome (infective and remnant), are crucial in promoting bacteria-phage patho-adaptive behaviours in the mammalian niche and thereby bacterial virulence. In the proposed project, we will investigate specific cross-regulatory and cooperative mechanisms of all the phage elements, study the domestication of phage remnant-derived regulatory factors, and examine the hypothesis that they collectively form an auxiliary phage-control system that tempers infective phages. Finally, we will examine the premise that the mammalian niche drives the evolution of temperate phages into patho-adaptive phages, and that phages that lack this adaptation may kill host pathogens during infection. This work is expected to provide novel insights into bacteria-phage coexistence in mammalian environments and to facilitate the development of innovative phage therapy strategies.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.