Otoliths as metabolic loggers Examining the physiological basis for climate res...
Otoliths as metabolic loggers Examining the physiological basis for climate resilience in wild populations of marine fish
The effect of temperature changes on ecosystems is determined by the physiological responses of individual organisms, but most studies predict responses at the species level. This conceptual convenience allows us to use relatively...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
TERMS-Ocean
Transgenerational Ecophysiological Responses to Multiple Str...
195K€
Cerrado
THE WEAKEST LINKS
How climate change affect the weakest links of animal tole...
167K€
Cerrado
EPOCA
European Project on Ocean Acidification
10M€
Cerrado
PID2021-125323OA-I00
RESPUESTAS MORFOLOGICAS, DEL METABOLISMO Y DEL MICROBIOMA DE...
83K€
Cerrado
PGC2018-100735-B-I00
ADAPTACION REGIONAL DE INVERTEBRADOS MARINOS CLAVE Y SENSIBI...
Cerrado
Información proyecto OTOLOG
Duración del proyecto: 27 meses
Fecha Inicio: 2016-07-08
Fecha Fin: 2018-10-31
Líder del proyecto
AARHUS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
200K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The effect of temperature changes on ecosystems is determined by the physiological responses of individual organisms, but most studies predict responses at the species level. This conceptual convenience allows us to use relatively simple models but does not allow for phenotypic plasticity or adaptation: the extent to which individuals are able to mitigate combined direct and indirect effects of temperature change by modifying their behaviour or energy budgets. The role of phenotypic plasticity in predicting population, species and ecosystem responses to change is one of the most pressing, but challenging areas in modern ecology. The importance of adaptation in moderating the ecological effects of warming in marine systems is very poorly understood.
Field metabolic rate (FMR) is the amount of energy consumed by an individual while performing day to day biological functions. An individual’s field metabolic rate therefore integrates a wide range of physiological and behavioural responses to the ambient environment, and is an ideal metric for understanding how individuals respond and adapt to temperature change. Unfortunately, there are major scientific challenges to measuring field metabolic rates in natural conditions. We will meet the challenge of recording FMR in marine ectotherms by exploiting a new biogeochemical measurement field metabolic rate in marine fishes based on the stable carbon isotope composition of otoliths. We will measure metabolic responses of a model organism, the Atlantic cod (Gadus morhua), and test a series of fundamental ecological hypotheses relating between-individual diversity in respiratory physiology to population scale resilience. Our research will break new ground by turning otoliths into internal metabolic loggers and significantly impact on our ability to investigate the links between individual adaptations, climate change and the distribution and persistence of populations.