Origin of the asymmetric electron transfer in photosynthesis explored by photo C...
Origin of the asymmetric electron transfer in photosynthesis explored by photo CIDNP MAS NMR
Photosynthetic reaction centres (RCs), such as the RC from purple bacteria or photosystems I and II of plants, have their cofactors arranged in a nearly C2 symmetry. Despite this symmetrical arrangement, the electron pathway in RC...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2012-30625
EFECTOS CUANTICOS EN LA TRANSFERENCIA DE ENERGIA EN SISTEMAS...
34K€
Cerrado
LightNet
LightNet Tracking the Coherent Light Path in Photosyntheti...
3M€
Cerrado
CTQ2012-36195
SIMULACION ATOMISTICA DE LA DINAMICA DE TRANSFERENCIA DE ENE...
67K€
Cerrado
PHOTPROT
The Dynamic Protein Matrix in Photosynthesis From Disorder...
3M€
Cerrado
IMAGINGELECTRONS
Photoelectron Imaging and Spectroscopy of biomolecules using...
45K€
Cerrado
Información proyecto REACTION CNTR CIDNP
Líder del proyecto
UNIVERSITEIT LEIDEN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
161K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Photosynthetic reaction centres (RCs), such as the RC from purple bacteria or photosystems I and II of plants, have their cofactors arranged in a nearly C2 symmetry. Despite this symmetrical arrangement, the electron pathway in RCs of purple bacteria and photosystem II is entirely unidirectional occurring along a single branch. In photosystem I, however, both electron transfer branches are equally active. It appears that the understanding of the very basic principles of the directionality of light-induced electron transfer is lacking. Here we propose to solve this question by combining laser-flash photochemically induced dynamic nuclear polarization (photo-CIDNP) magic angle spinning (MAS) NMR, providing electronic structure information of the highest occupied molecular orbital (HOMO) and the donor triplet at atomic resolution. This experimental data in combination with theoretical calculations will allow reconstructing the lowest unoccupied molecular orbital (LUMO) from which the electron is transferred. Our approach is based on the assumptions that (i) the donor triplet can be approximated by single electron occupation of both HOMO and LUMO, (ii) the structure of the LUMO is responsible for the directionality of the light-induced electron transfer. Hence, we aim at reconstruction of the LUMO of the electron donor as key for understanding directionality. This reconstruction may also stimulate research on artificial photosynthesis, which is currently facing the problem to direct charge separation into macroscopically useful units.